Rational 6-cycles under Iteration of Quadratic Polynomials

نویسنده

  • MICHAEL STOLL
چکیده

We present a proof, which is conditional on the Birch and Swinnerton-Dyer Conjecture for a specific abelian variety, that there do not exist rational numbers x and c such that x has exact period N = 6 under the iteration x 7→ x + c. This extends earlier results by Morton for N = 4 and by Flynn, Poonen and Schaefer for N = 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Evidence for a Conjecture of Poonen

The purpose of this note is give some evidence in support of conjectures of Poonen, and Morton and Silverman, on the periods of rational numbers under the iteration of quadratic polynomials. Suppose that φc(z) = z 2 + c, where c ∈ Q. We will say that α ∈ P1(Q) is a periodic point with exact period n for φc if φ n c (α) = α, while φ m c (α) 6= α for 0 < m < n. For example, the point at infinity ...

متن کامل

4 A ug 1 99 5 CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS 2 CURVE

It has been conjectured that for N sufficiently large, there are no quadratic polynomials in Q[z] with rational periodic points of period N. Morton proved there were none with N = 4, by showing that the genus 2 algebraic curve that classifies periodic points of period 4 is birational to X 1 (16), whose rational points had been previously computed. We prove there are none with N = 5. Here the re...

متن کامل

On Quadratic Periodic Points of Quadratic Polynomials

We focus on a very specific case of the Uniform Boundedness Conjecture, namely, bounding the number of possible c such that the quadratic polynomial φc(z) = z2 + c has quadratic periodic points of some small period. We show that there are infinitely many rational c with quadratic 4-cycles, with all such c completely understood; and only finitely many rational c with quadratic 5-cycles (we conje...

متن کامل

Cycles of Quadratic Polynomials and Rational Points on a Genus 2 Curve

It has been conjectured that for N sufficiently large, there are no quadratic polynomials in Q[z] with rational periodic points of period N . Morton proved there were none with N = 4, by showing that the genus 2 algebraic curve that classifies periodic points of period 4 is birational to X1(16), whose rational points had been previously computed. We prove there are none with N = 5. Here the rel...

متن کامل

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008